# Bis $\{(\mu$-acetato) $[\mu$-bis(salicylidene)-1,3propanediaminato]copper(II) $\}$ copper(II) dioxane solvate $\dagger$ 

Orhan Atakol, ${ }^{a}$ Cengiz Arici, ${ }^{b}$ Filiz Ercan ${ }^{b}$ and Dinçer Ülkü̈ ${ }^{b}$<br>${ }^{a}$ Department of Chemistry, Ankara University, Tandogan 06100, Ankara, Turkey, and ${ }^{\text {b }}$ Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, Turkey.E-mail: dulku@eti.cc.hun.edu.tr

(Received 18 June 1998; accepted 4 November 1998)


#### Abstract

The structure of the title compound, $\left[\mathrm{Cu}\left\{\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right.\right.$ $\left.\left.\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right\}_{2}\right] \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$, contains a linear homotrinuclear complex with a central $\mathrm{Cu}^{\text {II }}$ ion which lies on an inversion centre. It has an irregular octahedral coordination involving four O atoms from two $N, N^{\prime}$-bis-(salicylidene)-1,3-propanediaminato (SALPD ${ }^{2-}$ ) ligands and two acetate groups. The coordination about each of the two terminal $\mathrm{Cu}^{\mathrm{II}}$ ions related by the inversion centre comprises two O atoms and two N atoms from an SALPD ${ }^{2-}$ ligand, as well as one acetate O atom. Each acetate anion bridges between a terminal and the central $\mathrm{Cu}^{\text {II }}$ ion, and these are mutually trans. The $\mathrm{Cu} \cdots \mathrm{Cu}$ bridging distance is 3.1242 (7) $\AA$. Taking into account that the dioxane molecules bridge trinuclear complexes in neighbouring unit cells through $\mathrm{Cu} 2 \cdots \mathrm{O} 5$ contacts of 2.649 (3) $\AA$, each terminal $\mathrm{Cu}^{\mathrm{II}}$ ion possesses irregular octahedral coordination.


## Comment

Oxygen-bridged trinuclear linear homo- or heteronuclear complexes exhibit magnetic superexchange interactions between bridged metal ions, and their synthesis and structural characterization is therefore of interest. The ligand stereochemistry around the metal ions and the structure of the O -atom bridges influence the magnetic exchange interactions. The magnetic properties and synthesis of the trinuclear complexes of general formulae $\left[M_{2}(\mathrm{SALPD})_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}\right.$ ] $\left(M=\mathrm{Mn}^{2+}, \mathrm{Co}^{2+}\right.$, $\mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}$ or $\mathrm{Zn}^{2+}$ ) and $\left[M \mathrm{Ni}_{2}(\text { SALPD })_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}\right]$ ( $M=\mathrm{Mg}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Co}^{2+}$ or $\mathrm{Ni}^{2+}$ ), where $\mathrm{H}_{2}$ SALPD represents $N, N^{\prime}$-bis(salicylidene)-1, 3-propanediamine, were reported by Fukuhara et al. (1990). Only the structure of $\left[\mathrm{ZnCu}_{2}(\mathrm{SALPD})_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}\right]$ in this group of compounds has been determined by X-ray diffraction (Fukuhara et al., 1990). Similar trinu-

[^0]clear structures formulated as $\left[\mathrm{M}_{3}\left\{(\mathrm{SALPN})\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right.\right.$ $\left.\left.\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCHO}\right]\right\}_{2}\right]\left[M=\mathrm{Co}^{2+}, \mathrm{Fe}^{2+} ;\right.$ SALPN $=N, N^{\prime-}$ bis(salicylidene)-2,2-dimethylpropylenediamine] (Gerli et al., 1991), [ $\left.\mathrm{Ni}_{3}\left\{(\mathrm{SALPD})\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}\right]\right\}_{2}\right]$ (Ülkü, Ercan et al., 1997), $\left[\mathrm{Cd}\left\{\mathrm{Ni}(\mathrm{SALPD})\left(\mathrm{CH}_{3}-\right.\right.\right.$ $\left.\left.\left.\mathrm{CO}_{2}\right)\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCHO}\right]\right\}_{2}\right]$ (Ülkü, Tahir et al., 1997), [ $\left.\mathrm{Mn}\left\{\mathrm{Ni}(\mathrm{SALPD})\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCHO}\right]\right\}_{2}\right]$ (Ercan \& Atakol, 1998) and $\left[\mathrm{Cd}\left\{\mathrm{Cu}(\mathrm{SALPD})\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right\}_{2}\right] \cdot-$ $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (Ercan et al., 1998) have also been described. We report here a new linear homometal trinuclear complex, $\left[\mathrm{Cu}_{3}\left\{(\mathrm{SALPD})\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\right\}_{2}\right] \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$, (V).


The molecular structures of the trinuclear compounds cited above and the structure of the title compound are extremely similar, especially with respect to the coordination geometry around the metal ions. The triclinic unit cell of (V) contains a centrosymmetric trinuclear molecule whose central $\mathrm{Cu}^{\text {II }}$ ion is located at the inversion centre on the origin. The two inversion-related terminal $\mathrm{Cu}^{\mathrm{II}}$ ions each have an irregular square-pyramidal coordination polyhedron, with the four equatorial positions occupied by the two N and two O atoms of the SALPD ${ }^{2-}$ ligand. The axial position is occupied by an O atom from the bridging acetate group.

The coordination around the central $\mathrm{Cu}^{\text {II }}$ metal ion is an irregular octahedron involving four bridging O atoms from two SALPD ${ }^{2-}$ ligands in the equatorial plane, with the apical positions occupied by an O atom from each of the two bridging acetate groups. Within the coordination sphere, the $\mathrm{Cul}-\mathrm{O}\left(\right.$ SALPD $\left.^{2-}\right)$ bond lengths $[2.026(3)-2.356(3) \AA]$ are longer than the $\mathrm{Cul}-\mathrm{O}$ (acetate) distance $[1.951$ (2) $\AA$ ]. The range of $\mathrm{O} \cdots \mathrm{Cu} 1 \cdots \mathrm{O}$ angles in the irregular octahedron is $73.6(1)-92.3(1)^{\circ}$.

The $\mathrm{Cu} 1 \cdots \mathrm{Cu} 2$ distance is 3.1242 (7) $\AA$. The $\mathrm{Cu}-$ O distances in the equatorial positions of the irregular square-pyramidal coordination around the terminal $\mathrm{Cu}^{\mathrm{II}}$ ions [1.922 (3)-2.008 (3) $\AA$ ] are shorter than the axial $\mathrm{Cu} 2-\mathrm{O} 4$ bond distance of 2.265 (3) $\AA$.

Dioxane molecules bridge trinuclear complexes in neighbouring unit cells through $\mathrm{Cu} 2 \cdots \mathrm{O} 5$ contacts of 2.649 (3) A. Taking this long-range interaction into account, each terminal $\mathrm{Cu}^{\mathrm{II}}$ ion possesses irregular octahedral coordination. The dioxane molecules are located on inversion centres and have a chair conformation


Fig. 1. PLATON (Spek, 1998) drawing of (V) with the atomnumbering scheme. The displacement ellipsoids are drawn at the $50 \%$ probability level. H atoms are shown as small spheres of arbitrary radii. Dioxane molecules bridging neighbouring complexes have not been shown for clarity. [Symmetry code: (i) $-x,-y,-z$.]
with the para-positioned chair atoms, O 5 and $\mathrm{O} 5^{\mathrm{i}}$, lying $\pm 0.6530$ (3) $\AA$ from the best plane of the four C atoms.

The dihedral angle between the equatorial planes of the neighbouring polyhedra ( $\mathrm{O} 1, \mathrm{O} 2, \mathrm{~N} 1, \mathrm{~N} 2$ and O 1 , $\mathrm{O} 2, \mathrm{Ol}^{\mathrm{i}}, \mathrm{O}^{\mathrm{i}}$ ) is $21.64(9)^{\circ}$ [symmetry code: (i) $-x$, $-y,-z$ ]. The terminal $\mathrm{Cu}^{\text {II }}$ ion is 0.1362 (4) $\AA$ out of the equatorial plane. The six-membered chelate ring $(\mathrm{Cu} 2, \mathrm{~N} 1, \mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 10, \mathrm{~N} 2)$ has a chair conformation and the two para-positioned chair atoms, Cu 2 and C 9 , are displaced from their respective planes by 0.0993 (5) and -0.267 (5) A. A comparison of the dihedral angle between the two equatorial planes of the neighbouring polyhedra $(\varphi)$, and between the $M\left(\mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}\right)-\mathrm{O}-$ $M\left(\mathrm{Mn}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Cd}^{2+}\right)-\mathrm{O}$ bridging plane and the coordination plane around the central atom ( $\kappa$ ), along with the related distance ranges and bridging angles, are given in Table 1 for the five trinuclear complexes studied recently in this laboratory. From this Table, the remarkable similarity of the five structures is obvious.

## Experimental

$N, N^{\prime}$-Bis(salicylidene)-1,3-propanediamine ( $0.565 \mathrm{~g}, 2 \mathrm{mmol}$ ) was dissolved in hot dioxane $(100 \mathrm{ml})$. A solution of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(0.600 \mathrm{~g}, 3 \mathrm{mmol})$ in a hot methanol/dimethylformamide mixture ( $50 \mathrm{ml}, 4: 1$ ) was then added slowly. The resulting mixture was set aside for 2 d and the green crystals which formed were filtered off and dried in air.

## Crystal data

$\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{17} \mathrm{H}_{16}\right.\right.$ -
$\left.\left.\mathrm{N}_{2} \mathrm{O}_{2}\right)_{2}\right] \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
$M_{r}=957.476$
Triclinic
$P \overline{1}$
$a=10.0761(12) \AA$
$b=10.6819(13) \AA$
$c=10.9819(12) \AA$
$\alpha=63.847(2)^{\circ}$
$\beta=72.015(3)^{\circ}$
$\gamma=79.359(2)^{\circ}$
$V=1007.5(2) \AA^{3}$
$Z=1$
$D_{s}=1.578 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}$ not measured
Data collection
Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical via $\psi$ scans
(Fair, 1990)
$T_{\text {min }}=0.935, T_{\text {max }}=0.999$
4120 measured reflections 3926 independent reflections

## Refinement

| Refinement on $F$ | $(\Delta / \sigma)_{\text {max }}=0.00031$ |
| :--- | :--- |
| $R=0.044$ | $\Delta \rho_{\text {max }}=0.970 \AA_{\AA}^{-3}$ |
| $\sim R=0.046$ | $\Delta \rho_{\text {min }}=-0.139 \mathrm{e}^{-3} \AA^{-3}$ |

$u \cdot R=0.046$
$S=0.96$
2733 reflections
268 parameters
H atoms: see below
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=8.77-18.07^{\circ}$
$\mu=1.635 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Pinacoid
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$
Green

2733 reflections with

$$
I>1 \sigma(I)
$$

$R_{\text {int }}=0.014$
$\theta_{\text {max }}=26.42^{\circ}$
$h=-12 \rightarrow 0$
$k=-13 \rightarrow 12$
$l=-13 \rightarrow 13$
3 standard reflections
frequency: 120 min
intensity decay: $1.26 \%$
$(\Delta / \sigma)_{\max }=0.00031$
$\Delta \rho_{\text {max }}=0.90 \mathrm{e}_{\text {min }}=-0.139 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

$$
\begin{aligned}
& +0.2] \text { if } F^{2}>\sigma F^{2} \\
& w=0 \text { if } F^{2}<\sigma F^{2}
\end{aligned}
$$

Table 1. Structural data, bridging angles and dihedral angles ( $\varphi$ and $\kappa$ ) for five homo- or hetero-trinuclear complexes

| $M_{\text {terminal }}$ atoms are $\mathrm{Ni}^{2+}$ and $\mathrm{Cu}^{2+}$, and $M_{\text {central }}$ atoms are $\mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Cd}^{2+}$ and $\mathrm{Mn}^{2+}$. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Complex | $M_{\text {terminal }}$ - $\mathrm{O}(\mathrm{A})$ | $M_{\text {central }}$-O $(\AA)$ | $M-M(\AA)$ | $\mathrm{O}-\mathrm{M}_{\text {central }}-\mathrm{O}\left({ }^{\circ}\right)$ | $\mathrm{O}-\mathrm{M}_{\text {terminal }}-\mathrm{N}\left({ }^{\circ}\right)$ | $\varphi\left({ }^{\circ}\right)$ | $\kappa\left({ }^{\circ}\right)$ |
| (I) | 2.010 (3)-2.254 (3) | 2.024 (3)-2.098 (3) | 3.043 (2) | 79.4 (1) | 89.8 (2)-90.6 (2) | 21.9 (1) | 33.1 (1)-35.06 (7) |
| (II) | 2.012 (1)-2.190 (2) | 2.260 (1)-2.293 (2) | 3.227 (5) | 73.66 (5) | 88.09 (7)-89.76 (6) | 23.10 (7) | 26.38 (6)-32.80 (7) |
| (III) | 2.017 (2)-2.184 (2) | 2.163 (1)-2.194 (2) | 3.133 (2) | 76.66 (6) | 88.93 (8)-90.38 (7) | 23.68 (8) | 26.91 (7)-32.36 (9) |
| (IV) | 1.953 (3)-2.324 (2) | 2.280 (3)-2.310 (3) | 3.244 (3) | 70.06 (9) | 89.5 (1)-90.8 (1) | 21.51 (8) | 31.24 (10)-37.24 (6) |
| (V) | 1.922 (3)-2.265 (3) | 2.026 (3)-2.356 (3) | 3.1247 (7) | 73.61 (1) | 89.6 (1)-91.4 (2) | 21.64 (9) | 32.16(12)-38.23 (7) |

Notes: (I) is $\left[\mathrm{Ni}_{3}\left\{\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)(\mathrm{SALPD})\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}\right]\right\}_{2}\right]$ (Ülkü, Ercan et al., 1997). (II) is $\left[\mathrm{CdNi}_{2}\left\{\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)(\mathrm{SALPD})\left[\left(\mathrm{CH}_{3}\right) \mathrm{NCHO}^{2}\right\}_{2}\right]\right.$ (Ülkü, Tahir et al., 1997), (III) is [ $\mathrm{MnNi}_{2}\left\{\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)(\mathrm{SALPD})\left[\left(\mathrm{CH}_{3}\right) \mathrm{NCHO}_{2}\right\}_{2}\right]$ (Ercan \& Atakol, 1998). (IV) is [CdCu $\left.\left\{\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)(\mathrm{SALPD})\right\}_{2}\right]$-$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (Ercan et al., 1998) and ( V ) is $\left\{\mathrm{Cu}_{3}\left\{\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)(\mathrm{SALPD})\right\}_{2}\right\rceil \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (title compound).

Table 2. Selected geometric parameters ( $\AA{ }^{\circ}{ }^{\circ}$ )

| Cul-Cu2 | 3.1242 (7) | Cu 2 NI | 1.957 (4) |
| :---: | :---: | :---: | :---: |
| Cul-OI | 2.026 (3) | $\mathrm{Cu} 2-\mathrm{N} 2$ | 1.997 (4) |
| $\mathrm{CuI}-\mathrm{O} 2$ | 2.356 (3) | $\mathrm{Ol}-\mathrm{Cl}$ | 1.319 (5) |
| Cul-O3 | 1.951 (2) | $\mathrm{O} 2-\mathrm{Cll}$ | 1.303 (5) |
| Cu2-O1 | 2.008 (3) | O3-C18 | 1.265 (6) |
| $\mathrm{Cu} 2-\mathrm{O} 2$ | 1.922 (3) | O4-C18 | 1.236 (7) |
| Cu2-O4 | 2.265 (3) |  |  |
| $\mathrm{Ol}-\mathrm{Cul}-\mathrm{O} 2$ | 73.6 (1) | $\mathrm{N} 1-\mathrm{Cu} 2-\mathrm{N} 2$ | 94.0 (2) |
| $\mathrm{O} 1-\mathrm{Cul}-\mathrm{O} 3$ | 89.2 (1) | $\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{Cu} 2$ | 101.5 (1) |
| $\mathrm{O} 2-\mathrm{CuI}-\mathrm{O} 3$ | 92.3 (1) | $\mathrm{Cu} 2-\mathrm{Ol}-\mathrm{Cl}$ | 122.8 (3) |
| $\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{O} 2$ | 84.3 (1) | $\mathrm{Cu} 2-\mathrm{O} 2-\mathrm{Cll}$ | 124.4 (3) |
| $\mathrm{Ol}-\mathrm{Cu} 2-\mathrm{O} 4$ | 90.7 (1) | $\mathrm{Cul}-\mathrm{O} 3-\mathrm{Cl} 8$ | 134.1 (3) |
| $\mathrm{Ol}-\mathrm{Cu} 2-\mathrm{Ni}$ | 89.6 (1) | Cu2-O4-C18 | 122.4 (2) |
| $\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{N} 2$ | 167.7 (1) | $\mathrm{Cu} 2-\mathrm{N} 1-\mathrm{C} 7$ | 123.2 (4) |
| $\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{O} 4$ | 90.4 (1) | $\mathrm{Cu} 2-\mathrm{NI}-\mathrm{C} 8$ | 119.4 (3) |
| $\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{NI}$ | 173.0 (1) | $\mathrm{Cu} 2-\mathrm{N} 2-\mathrm{C} 10$ | 122.3 (3) |
| $\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{N} 2$ | 91.4 (2) | $\mathrm{Cu} 2-\mathrm{N} 2-\mathrm{Cl} 7$ | 121.3 (4) |
| $\mathrm{O} 4-\mathrm{Cu} 2-\mathrm{Nl}$ | 93.1 (1) | $\mathrm{O} 3-\mathrm{C} 18-\mathrm{O} 4$ | 127.4 (3) |
| $\mathrm{O} 4-\mathrm{Cu} 2-\mathrm{N} 2$ | 100.9 (1) |  |  |

Table 3. Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| C2- $22 \cdots 3^{\prime}$ | 0.950 | 2.522 | $3.125(6)$ | $121.4(3)$ |
| $\mathrm{C} 21-\mathrm{H} 211 \cdots \mathrm{O} 3^{1}$ | 0.906 | 2.542 | $3.408(6)$ | $160.3(4)$ |

Symmetry code: (i) $-x,-y,-z$.

All non-H atoms were refined with anisotropic displacement parameters. The H7, H17, H81, H82, H91, H92, H101, H102, H191, H192, H193, H201, H202, H211 and H212 atoms were taken from difference maps, while other H atoms were placed geometrically $0.95 \AA$ from their parent C atoms and then a riding model was used for all H atoms with $U_{\text {iso }}(\mathrm{H})=$ $1.3 U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: CAD-4 Software (Enraf-Nonius, 1994). Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MolEN. Program(s) used to refine structure: MolEN. Molecular graphics: PLATON (Spek, 1998). Software used to prepare material for publication: MolEN.

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under grant DPT/TBAGl of the Scientific and Technical Research Council of Turkey.

[^1]
## References

Enraf-Nonius (1994). CAD-4 Software. Version 1.I. Enraf-Nonius, Delft, The Netherlands.
Ercan, F. \& Atakol, O. (1998). Acta Cryst. C54, 1268-1270.
Ercan, F., Ülkü, D., Atakol, O. \& Dinçer, F. N. (1998). Acta Cryst. C54, 1787-1790.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Fukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M. \& Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3473-3479.
Gerli, A., Hagen, K. S. \& Marzilli, L. (1991). Inorg. Chem. 30, 46734676.

Spek. A. L. (1990). Acta Cryst. A46. C.-34.
(c) 1999 International Union of Crystallography

Printed in Great Britain - all rights reserved

Spek, A. L. (1998). PLATON. Molecular Geometry Program. University of Utrecht, The Netherlands.
Ülkü, D., Ercan, F., Atakol, O. \& Dinçer, F. N. (1997). Acta Cryst. C53, 1056-1057.
Ülkü, D., Tahir, M. N., Atakol, O. \& Nazır, H. (1997). Acta Cryst. C53, 872-874.

Acta Cryst. (1999). C55, 513-517

## Copper(II) 2-thiopheneglyoxylate adducts with pyridine derivatives

Kazuyuki Nakasa, Hiroo Nakagawa, Yoshiyuki Kani, Masanobu Tsuchimoto and Shigeru Ohba

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan. E-mail: ohba@chem.keio.ac.jp
(Received 14 August 1998; accepted 3 December 1998)

## Abstract

In the crystals of trans-bis(pyridine- $N$ ) bis(2-thiophene-glyoxylato- $O^{1}, O^{2}$ )copper(II), $\left[\mathrm{Cu}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$, there is a mononuclear $\mathrm{Cu}^{\mathrm{II}}$ complex molecule. In the crystal of catena-poly[[[bis(2-thiopheneglyoxylato$O^{1}, O^{2}$ )copper(II)]- $\mu$-(2-thiopheneglyoxylato- $O^{1}: O^{1}, O^{2}$ )-[bis(3-methylpyridine- $N$ ) copper(II)]- $\mu$-(2-thiophenegly-oxylato- $\left.\left.O^{1}, O^{2}: O^{1^{\prime}}\right)\right]$ monohydrate $],\left\{\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{~S}\right)_{4}\right.\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, there is a zigzag polymer chain where the $\mathrm{Cu}^{\text {II }}$ atoms are bridged by the thiopheneglyoxylate ions. In the crystal of cis-bis(4-methylpyri-dine- $N$ )bis(2-thiopheneglyoxylato- $O^{1}, O^{2}$ )copper(II), $[\mathrm{Cu}-$ $\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{3} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{2}$ ], there is a mononuclear $\mathrm{Cu}^{\text {II }}$ complex. The coordination geometry around the Cu atoms is distorted octahedral. Each thiopheneglyoxylate ion adopts a flattened structure and forms a fivemembered chelate ring with the Cu atom.

## Comment

Dimeric copper(II) benzoylformates adopt a cage structure and show an abnormally large antiferromagnetic spin-exchange interaction between the Cu atoms (Harada et al., 1997). In the present study, 2-thiopheneglyoxylic acid was selected as another $\alpha$-keto acid to prepare a binuclear copper(II) complex with pyridine derivatives as axial ligands. However, the compounds

Acta Crystallographica Section C
ISSN 0108-270I © 1999


[^0]:    $\dagger$ Alternative name: $\operatorname{bis}\left(\mu\right.$-acetato) $-1: 2 \kappa^{2} O: O^{\prime} ; 1: 3 \kappa^{2} O: O^{\prime}$-bis $\left\{\mu-2,2^{\prime}\right.$ -
    [1,3-propanediylbis(nitrilomethylidyne)]diphenolato \}-1 $\kappa^{2} O, O^{\prime}: 2 \kappa^{4}$ $N, N^{\prime}, O, O^{\prime} ; 1 \kappa^{2} O, O^{\prime}: 3 \kappa^{4} N, N^{\prime} . O, O^{\prime}$-tricopper(II) dioxane solvate.

[^1]:    Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1276). Services for accessing these data are described at the back of the journal.

